Graph-based sparse linear discriminant analysis for high-dimensional classification
نویسندگان
چکیده
منابع مشابه
Sparse Linear Discriminant Analysis by Thresholding for High Dimensional Data
In many social, economical, biological, and medical studies, one objective is to classify a subject into one of several classes based on a set of variables observed from the subject. Because the probability distribution of the variables is usually unknown, the rule of classification is constructed using a training sample. The well-known linear discriminant analysis (LDA) works well for the situ...
متن کاملClassification of high dimensional data: High Dimensional Discriminant Analysis
We propose a new method of discriminant analysis, called High Dimensional Discriminant Analysis (HHDA). Our approach is based on the assumption that high dimensional data live in different subspaces with low dimensionality. Thus, HDDA reduces the dimension for each class independently and regularizes class conditional covariance matrices in order to adapt the Gaussian framework to high dimensio...
متن کاملSparse Quadratic Discriminant Analysis For High Dimensional Data
Many contemporary studies involve the classification of a subject into two classes based on n observations of the p variables associated with the subject. Under the assumption that the variables are normally distributed, the well-known linear discriminant analysis (LDA) assumes a common covariance matrix over the two classes while the quadratic discriminant analysis (QDA) allows different covar...
متن کاملTwo-dimensional Heteroscedastic Linear Discriminant Analysis for Age-group Classification
This paper presents a novel LDA algorithm named 2DHLDA (2-Dimensional Heteroscedastic Linear Discriminant Analysis). The proposed algorithms are applied on age-group classification using facial images under various lighting conditions. 2DHLDA significantly overcomes the singularity problem, so-called ’Small Sample Size’ problem (S3 problem), and the original feature space is split into useful d...
متن کاملSparse Uncorrelated Linear Discriminant Analysis
In this paper, we develop a novel approach for sparse uncorrelated linear discriminant analysis (ULDA). Our proposal is based on characterization of all solutions of the generalized ULDA. We incorporate sparsity into the ULDA transformation by seeking the solution with minimum `1-norm from all minimum dimension solutions of the generalized ULDA. The problem is then formulated as a `1-minimizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2019
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2018.12.007